# In vitro: The Increase of The Quality of Sakura Block As a Dietary Supplement to Increase The Concetration Branched Volatile Fatty Acids (BCVFA) and total bacteria

# J Jarmuji <sup>1,3</sup>, L Warly<sup>2</sup>, M Zain<sup>2</sup> and K Khasrad<sup>2</sup>

- <sup>1</sup> Department of Animal Nutrition, Faculty of Animal Science Andalas University, Campus Limau Manis, Padang, West Sumatera, Indonesia
- <sup>2</sup> Department of Animal Nutrition, Faculty of Animal Science Andalas University, Campus Limau Manis, Padang, West Sumatera, Indonesia
- <sup>3</sup> Departemen of Animal science, University of Bengkulu, Bengkulu, 38371, Indonesia

E-mail: liliwarly uapdg@yahoo.co.id

#### **Abstract**

The enrichment of sakura block by utilizing palm kernel cake as a substitute for corn and optimal use of earthworm flour in increasing branched volatile fatty acids and rumen bacteria population needs to be undertaken to support the cattle-palm oil integration system in Indonesia. This study used a completely randomized design with 6 treatments and 3 replications and it consisted of commercial Sakura block block treatment as a control (P0), Sakura block enriched with palm kernel cake (P1) and sakura block enriched with palm kernel cake and 2% earthworm flour (P2). 4% (P3), 6% (P4) and 8% (P5). The results indicated that there was a significant increase in the concentration of total branched volatile fatty acid, isobutyrate, isovalerate, valerate and total bacteria in the sakura block treatment enriched with palm kernel cake and earthworm flour. From all parameters, the highest increase was obtained in the treatment of sakura block enriched with palm kernel cake and 6% earthworm flour (P4).

Keywords: commercial sakura block, palm kernel cake, earthworms, branched volatile fatty acids, total of bacteria.

#### Introduction

The effort to increase the value of ruminant feed such as beef cattle are carried out by paying attention to nutrient requirements for rumen microbial growth and livestock production needs [1]. The contribution of microbial protein to the needs of rumnans reaches 70-100% and the energy supply from fermentation is 70-85% [2]. Therefore, it is not enough to take into account the nutritional content in it, but it is also necessary to take into account the ability of bacteria to utilize the nutrients contained in the feed. Sakura block is a supplement feed made of low quality coconut sugar, bran, corn, sago, urea, salt, TSP, mineral mix and top mix [3]. Sakura block contains 20.39% crude protein, 3.73% crude fiber and 72.59% TDN. Provision of 10% sakura block supplementation based on dry matter rations

can increase dry matter consumption, weight gain and organic matter digestibility of local beef cattle in Kaur district, Bengkulu province fed with palm midrib basalt and Setaria sp grass [3]. Sakura block has been produced commercially in the Department of Animal Husbandry, Faculty of Agriculture, Bengkulu University and has been widely used by beef cattle and dairy farmers in Bengkulu Province.

The growth of the palm oil industry in Indonesia can be an opportunity for the development of beef cattle [4,5,6]. Although the production of forage decreases with increasing age of oil palm planting [7,8,9]. On the other hand, there is potential for waste from oil palm processing that is used as a source of animal feed [10,11,12]. Palm kernel cake is one of the palm oil processing wastes whose production is quite large, in every 1 tonne of palm bunch processing an average of 120 kg of palm oil is produced [13]. The average chemical composition of palm kernel cake was 89-95% for dry matter, 12-15% for crude protein, 6-24.9% for crude fiber, Also, acid detergent fiber being 43.7%, neutral detergent fiber being 66.7% and lignin being 21.1% [14,15,16]. Palm kernel cake can be used as a substitute for corn and its use is up to 28% of ruminant concentrate material [17], even the use of palm kernel cake protected with molasses in the concentrate material can reach 40% [18].

Besides, utilizing palm kernel cake, the introduction of earthworms has the potential to be developed to optimize the development of beef cattle in the oil palm area. Cow dung waste is very good for earthworm growth media [19,20]. Earthworms are also good decomposers to produce organic fertilizer for plants [20,21,22]. The chemical content of earthworms is 63.08% protein, 18.51% crude fat, 1.08% crude fiber, 5.81% ash and 12.41% BETN [23]. The protein contained in earthworms is a source of Branched Chain Amino Acid (BCAA) [24,25,26] which is needed for the growth of fiber-destroying microbes in the rumen [27,28,29,30,31].

Dealing with the description above, it is necessary to enrich the sakura block by utilizing oil palm meal as a substitute for corn and the optimal level of use of earthworm flour in increasing branched volatile fatty acids and rumen bacterial population.

## **Materials and Methods**

#### Ethical approval

This research did not use any live animals so, ethical approval is not needed.

# Research Procedure Making Sakura Blocks

Prepare the ingredients, including: rejected brown sugar, rice bran, corn, sago, urea, salt, mashed TSP, mineral mix and topmix respectively. The ingredients in the form of flour were mixed first starting from the least amount to the most homogeneous. water soluble ingredients such as rejected brown sugar, urea and salt are dissolved in water as much as 7% of the total ingredients, then heated over low heat until dissolved. Furthermore, the dry ingredients were mixed with liquid ingredients until evenly distributed and

printed. Sakura blocks that have been printed were dried for 2-3 days, then they were stored in plastic wrap or used immediately.

#### **Treatment**

This study used a completely randomized design with 6 treatments and 3 replications consisting of commercial product sakura blocks as control (P0), Sakura blocks enriched with oil palm meal (P1) and sakura blocks enriched with oil palm meal and 2% earthworm flour (P2), 4% (P3), 6% (P4) and 8% (P5). The composition composition of the control block and treatment is presented in Table 1.

 Table 1. Ingredient and Nutrient Sakura Block

| Ingredient (%)                | Treatment |       |       |       |       |       |  |  |
|-------------------------------|-----------|-------|-------|-------|-------|-------|--|--|
|                               | P0        | P1    | P2    | Р3    | P4    | P5    |  |  |
| Rejected brown sugar          | 32.0      | 32.0  | 32.0  | 32.0  | 32.0  | 32.0  |  |  |
| Rice barn                     | 28.0      | 28.0  | 26.0  | 24.0  | 22.0  | 20.0  |  |  |
| Corn                          | 15.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |  |  |
| Palm kernel cake              | 0.0       | 15.0  | 15.0  | 15.0  | 15.0  | 15.0  |  |  |
| Earthworm flour               | 0.0       | 0.0   | 2.0   | 4.0   | 6.0   | 8.0   |  |  |
| Sagoo                         | 15.0      | 15.0  | 15.0  | 15.0  | 15.0  | 15.0  |  |  |
| Urea                          | 5.0       | 5.0   | 5.0   | 5.0   | 5.0   | 5.0   |  |  |
| Salt                          | 2.0       | 2.0   | 2.0   | 2.0   | 2.0   | 2.0   |  |  |
| Triple superphospate          | 1.0       | 1.0   | 1.0   | 1.0   | 1.0   | 1.0   |  |  |
| Mineral mix                   | 1.0       | 1.0   | 1.0   | 1.0   | 1.0   | 1.0   |  |  |
| Topmix                        | 1.0       | 1.0   | 1.0   | 1.0   | 1.0   | 1.0   |  |  |
| Total Nutrient                | 100       | 100   | 100   | 100   | 100   | 100   |  |  |
| Dry matter (%)                | 89.06     | 89.81 | 89.80 | 90.07 | 90.78 | 89.19 |  |  |
| Organic matter (%)            | 93.55     | 93.65 | 93.60 | 93.61 | 93.85 | 93.61 |  |  |
| Crude Protein (%)             | 17.83     | 20.37 | 21.95 | 23.50 | 25.28 | 25.72 |  |  |
| Crude fibber (%)              | 3.67      | 5.25  | 4.97  | 4.53  | 4.62  | 4.58  |  |  |
| Extract eter (%)              | 3.00      | 3.27  | 2.91  | 3.92  | 3.05  | 3.21  |  |  |
| Total Digestible Nutrient (%) | 78.87     | 81.90 | 84.35 | 86.96 | 87,76 | 88.27 |  |  |

Ruminant Animal Nutrition Laboratory, Faculty of Animal Husbandry, Andalas University (2021)

#### In vitro

In vitro analysis was carried out to determine Branvhed Volatile Fatty Acid (BCVFA), isobutirat, isovalerat and valerat and of each feed component using the Tilley and Terry [32] method, performed for 48 h for forage and 24 h for concentrate. Rumen liquor was obtained from slaughterhouse from local goat fed with native grass and concentrate. Incubation was stopped by immersing the Erlenmeyer flask into ice water to stop the microbial activity, after which pH measurement was carried out using a pH meter. Next, the supernatant was separated from the residue. To do this, the mixture obtained

from in vitro analysis was put into a centrifuge tube and then centrifuged for 30 min, 3000 rpm, at 4°C. The supernatant was stored in bottles and then frozen until subsequent BCVFA, isobutirat, isovalerat and valerat. Concentration BCVFA, isobutirat, isovalerat and valerat was determined using gas chromatography. Rumen bacteria population was analyzed through Ojimoto and Imail method developed in Nutrition Laboratory of Livestock Research Center Bogor, Indonesia.

## Statistical Analysis

The obtained data were analyzed using an analysis of variance [33]. If there were differences, they were then tested Duncan's multiple range test.

#### **Results and Discussion**

The characteristics of rumen fluid observed in vitro analysis are shown in table 2. There were significant differences in the parameters of total branched volatile fatty acid, isobutyrate, isovalerate, valerate and total bacteria between treatments (P < 0.05).

**Table 2.** Concentrations Of BCVFA, Isobutyrate, Isovalerate, Valerate And Total Bacteria

| Parameter                                     | Treatment               |                         |                         |                         |                        |                         |  |  |  |
|-----------------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|------------------------|-------------------------|--|--|--|
|                                               | P0                      | P1                      | P2                      | Р3                      | P4                     | P5                      |  |  |  |
| BCVFA<br>(mM)                                 | 11.44±0.74 <sup>a</sup> | 13.48±0.15 <sup>b</sup> | 13.50±0.74 <sup>b</sup> | 13.89±0.17 <sup>b</sup> | 15.03±0.83°            | 14.51±0.77 <sup>b</sup> |  |  |  |
| Isobutyrate (mM)                              | 4.32±0.37 <sup>a</sup>  | 4.88±0.20 <sup>ab</sup> | $5.00\pm0.71^{ab}$      | $4.44 \pm 0.26^{ab}$    | 5.47±0.25 <sup>b</sup> | 5.17±0.37 <sup>ab</sup> |  |  |  |
| Isovalerate (mM)                              | $3.96\pm0.39^{a}$       | $4.45\pm0.19^b$         | 4.53±0.12 <sup>b</sup>  | $4.17 \pm 0.46^{ab}$    | 4.97±0.34°             | $4.17\pm0.09^{b}$       |  |  |  |
| Valerate<br>(mM)                              | $3.16\pm0.13^{a}$       | 4.15±0.31 <sup>b</sup>  | $3.97 \pm 0.14^{b}$     | $4.28\pm0.05^{b}$       | $4.29\pm0.69^{b}$      | $4.17 \pm 0.32^{b}$     |  |  |  |
| Total<br>Bacteria (kol<br>x 10 <sup>9</sup> ) | $2.47 \pm 0.06^{b}$     | $2.45 \pm 0.38^{b}$     | 2.60±0.13bc             | 2.65±0.45bc             | 2.81±0.55°             | 1.79±0.26ª              |  |  |  |

BCFVA; branched volatile vatty acid, source: Laboratory of Animal Research Institute, Ciawi. Bogor

Treatment of palm kernel cake substituted with corn and earthworm flour on commercial sakura blocks was able to significantly increase branched volatile fatty acids (BCVFA) (P<0.05). The average concentration of BCVFA in the treatment of palm kernen oil with corn substitution (P1) was 13.48 mM, an increase of 17.83% from the commercial sakura block (P0) of 11.44 mM. The concentration of BCVFA (P1) did not show any difference (P>0.05) with the concentration of BCVFA produced by P2, P3 and P5. Meanwhile, the highest increase in BCVFA concentration (P<0.05) was produced by the sakura block which was treated with palm kernel cake as a substitute for corn and 6% earthworm flour (P4), which increased by 31.29% from the commercial sakura block (P0). Other parameters such as isobutyrate and isovalerate also showed the same results, where those who received oil palm meal as a substitute for corn and 6% earthworm flour (P4) experienced the

highest increase compared to other treatments (P1, P2, P3 and P5). The concentrations of isobutyrate, isovalerate and valerate of sakura block (P4) were 5.47 nM, 4.97 nm and 4.29 nM or increased by 26.62%, 25.50% and 35.75%, respectively, from commercial sakura block (P0). In line with the results obtained by the parameters of BCVFA, isobutyrate, isovalerate and valerate, a significant increase in bacterial population was produced in the sakura block treatment enriched with 6% earthworm flour (P4) compared to other treatments. The total rumen bacteria P4 was 2.81x109 col significantly larger than the population of P0, P1, P2, P3 and P5.

The increase of the concentration of BCVFA, isobutyrate, isovalerate and valerate in liquid was due to the high content of branched amino acids (valine, leucine and isoleucine) in earthworms [25,34]. Branched amino acids (BCAAs included: valine, leucine and isoleucine) are degraded and decarboxylated to produce Branched Chain Fatty Acids (BCVFA) such as isobutrirate, isovalerate and valerate [35]. BCVFA is then used as a cofactor for the formation of rumen bacterial cells [28,36,37], especially cellulolytic bacteria such as Ruminoccocus flavifaciens and Bacteriodes succinogenes which have an important role in degrading lignin in cell walls. plants [27]. Tylutki and Fox [30] stated that deficiency of branched amino acids, especially lysine in ruminant diets with high fiber content can inhibit the formation of rumen bacterial cells.

However, the addition of branched amino acids to the diet has limitations, this is due to lysine, leucine and isoleucine are more difficult to synthesize by rumen microbes [29, 38]. In this study, the optimal limit for using earthworms in sakura block to increase BCVFA and bacterial population was 6%. Besides, the increase of the concentration of BCVA and the population of rumen bacteria, sakura block enriched with 6% earthworms can increase ammonia and volatile fatty acids which were the main sources of nitrogen and energy for the synthesis and growth of rumen bacteria [39] while Zhang et al. [40] revealed that the optimal limit for the addition of valine, leucine and isoleucine in fibrous rations to increase rumen fermentation products and nutrient digestibility was 2 mmol/L. Sihombing et al. [41] pointed out that the supplementation of earthworm flour to a level of 6% in the ration did not significantly improve the performance of sheep in the period of growth.

#### Conclusion

Synchronization between protein and carbohydrates which balanced from palm kernel cake substitution treatment for corn and earthworm flour to a level of 6% in commercial sakura blocks was able to optimally increase the concentration of branched volatile fatty acids, isobutyrate, isovalerate, valerate and total rumen bacteria for growth and protein synthesis of rumen microbes. In the process of cell formation, generally, the rumen microbes used volatile fatty acids from carbohydrate synthesis and ammonia (NH3) as the result of protein synthesis and non-protein nitrogen (NPN) animal feed. Earthworm flour was a protein-rich feed ingredient and it contained of

branched amino acids (valine, leucine and isoleucine) which will be degraded and decarboxylated to free isobutyrate, isovalerate and valerate.

#### **Author Contribution**

JJ, LW, MZ and KK formulated experimental designs and experimental work in the laboratory. JJ compiled the manuscript and performed data analysis under the supervision of LW, MZ and KK. All authors read and agreed to the final version of the manuscript.

### Acknowledgement

The authors are grateful to the Directorate General of Higher Education, The Ministry of Education and Culture for Funding this research under the scheme of Doctoral Research of Dissertation (Penelitian Disertasi Doktor) with contract number: 104/E4.1/AK.04.PT/2021. This research was not carried out well without technical assistance from the staff of the Ruminant Animal Nutrition Laboratory, Faculty of Animal Husbandry, Andalas University.

#### References

- [1] Ismartoyo. 2011. Pengantar Penelitian Degradasi Pakan Ternak Ruminansia. Penerbit Brilliant International. Surabaya.
- [2] Dewhurst RJ, Webster AJW, Wainman FW and Dewey PJS. 1986. Prediction of the true metabolisable energy concentration in forage for ruminants. Anim. Prod. 43:183-194.
- [3] Jarmuji, Santoso U and Brata B. 2017. Effect of oil palm fronds and Setaria sp. as forages plus sakura block on the performance and nutrient digestibility of kaur catle. Pakistan Journal of Nutrition. Open acces. ISSN 1680-5194 DOI: 10.3923/pjn.2017.
- [4] Dwyanto K, Sitompul D, Matius IW dan Soentoro. 2004. Pengkajian Pengembangan Usaha Sistem Integrasi Sawit Sapi. Prosiding Lokakarya Nasional Sistem Integrasi Sawit- Sapi. Kementrian Pertanian Bekerja sama dengan Pemerintah Daerah Propinsi Bengkulu dan PT. Agricinal.
- [5] Sirait P, Lubis Z dan Sinaga M. 2015. Analysis of cattle and oil palm integration systems in increasing farmers' income in Labuhanbatu Regency. Agrica J. Agribusiness North Sumatra, Vol. 8 No 1 available onlinehttp//ojs.uma.ac.id/index.php/agrica
- [6] Matondang RH and Talib C. 2015. Development model of Bali cattle in integration efforts in oil palm plantations. Wartazoa. 25(3): 147-157.

- [7] Daru TP, Yulianti A and Widodo E. 2014. Potential forage in oil palm plantations as feed for beef cattle in Kutai Negara Regency. Pastura. 3 (2): 94-98.
- [8] Purwantari ND, Tiesnamurti D and Adinata Y. 2015. Availability of forage sources under oil palm plantations for cattle grazing. Wartazoa. 25(1): 047-054.
- [9] Ramdani D, Abdullah L and Kumalasari NR. 2017. Analysis of the potential of local forage in the integration system of oil palm with ruminants in Mandau District, Bengkalis Regency, Riau Province. Animal Feed Bulletin. 104(1):1-8.
- [10] Aritonang D. 1986. Oil palm plantations, a source of animal feed. Journal of Agricultural Research and Development. 4: 93-99.
- [11] Batubara LP. 2003. Potential integration of livestock with oil palm plantations as a ruminant agribusiness node. Wartazoa. 13:83-91.
- [12] Indriarta AN. 2010. Kelapa Sawit, Budidaya dan Pengolahan. CV. Sinar Cemerlang Abadi. Jakarta. Cetakan Pertama. ISBN:978-979-1106-25-2
- [13] Suparjo. 2000. Increasing the potential of palm fiber as a source of ruminant feed. Animal Husbandry Bulletin Supplementary Edition: Faculty of Animal Husbandry, Gajah Mada University. Yogyakarta. Pp. 223-236.
- [14] Adesehinwa AOK. 2007. Utilization of palm kernel cake as a replacement for maize in diets of growing pigs: Effects on performance, serum metabolites, nutrient digestibility and cost of feed conversion. Bulg. J. Agric. Sci. 13: 593-600.
- [15] Bello KM, Oyawoye EO and Bogoro SE. 2008. Effect of processing on chemical composition of Palm Kernel meal (Elaeis guineensis). Proceedings of the 13<sup>th</sup>.
- [16] Akinyeye RO, Emmanuel IA, Olayinka F and Adedunke A. 2011. Physico-chemical properties and anti-nutritional factors of palm fruit products (Elaeis guineensis Jacq.) from Ekiti State Nigeria. Electron. J. Environ. Agric. Food Chem. 10: 2190- 2198.
- [17] Ferreras L, Gomez E, Toresani E, Firpo I, Rotondo R 2006. Effect of organic amendments on some physical, chemical and biological properties in a horticultural soil. Biores. Technol. 97:635–640.
- [18] Haryanto B. 2014. Manipulating protein degradability in the rumen to support higher ruminant production. Wartazoa. 24(3):34-42.

- [19] Jarmuji, Santoso U, Brata B and Cibro. 2016. Effect of media of kaur cow feces utilizing palm fronds on klitelium development and children earthworm (Pheretima sp) production. Prosiding. International Seminar sustainable utilization of coastal resources in tropical zone, 19-20 October, 2016. Bengkulu, Indonesia. University of Bengkulu. Pp:413-418.
- [20] Dani IR, Jarmuji, Pratama AW and Nugraha DA. 2017. Collaboration of mesaba (cow and sheep feces media) to the response of earthworms (Pheretima sp). Indonesian J. Anim. Sci., 12(3): 308-316. https://doi.org/10.31186/jspi.id.12.3.308-316.
- [21] Parmelee RW, Beare MH, Cheng W, Hendrix PF, Rider SJ, Crossley DA and Coleman DC. 1990. Earthworm and Enchytraeids in conventional and notillage agroecosystems: A biocide approach to asses their role in organic matter breakdown. Biol. Fertil. Soils 10 (3): 1-10.
- [22] Anwar EK.2007. Effect of earthworm inoculant and organic matter application on fertility and productivity of Ultisol soil. J. Soil Trop. 12 (2):121-130.
- [23] Damayanti E, Sofyan A and Julendra H. 2008. Antimicrobial power of earthworm lumbricusrubellus meal and its potential as an additive in animal feed. J. Biosfera, 25(3): 123-128.
- [24] Ciptanto S and Paramita U. 2011. Mendulang Emas Hitam Melalui Budi Daya Cacing Tanah. Liliy Publisher. Yogyakarta. ISBN:978-979-29-2558-6.
- [25] Hayati SN, Herdian H, Damayanti E, Istiqomah L and Julendra H. 2011. The amino acid profile of the earthworm (Lumbricus rubellus) extract started with the spray drying method. Indonesian J. Technol. Volume 34, Special Edition.
- [26] Hermawan R. 2017. Usaha Budi Daya Cacing Lumbricus Multiguna dan Prospek Ekspor Tinggi. Penerbit Pustaka Baru Press, Yogyakarta.
- [27] Baldwin RL and Allison MJ. 1983. Rumen metabolism. J. Anim. Sci. 57: 2209 2215.
- [28] Russel JB and Sniffen CJ. 1984. Effect of carbon 4 and carbon 5 volatile fatty acid on growth of mix rumen bacteria in vitro. J. Dairy Sci. 67: 987 995.
- [29] Arora SP. 1995. Pencernaan Mikroba Pada Ruminansia. Gajah Mada University Press (translator R. Murwani).

- [30] Tylutki TP and Fox DG. 1997. Application of the Cornell nutrient management planning system: optimizing herd nutrition. In: Proceedings of Cornell Nutrition Conference for Feed Manufacturers. New York: Cornell University.
- [31] Zain M, Sutardi T, Suryahadi and Ramli N. 2008. Effect of defaunation and supplementation methionine hydroxy analogue and branched chain amino acid in growing sheep diet based on palm press fiber ammoniated. Pak. J. Nutr. 7:813-816.
- [32] Tilley JM and Terry RA. 1969. A two-stage technique for in vitro digestion of forage crops. J. Br. Grassland Soc., 18(2): 104-111.
- [33] Toutenburg H and Shalabh HT. 2009. Statistical Analysis of Designed Experiments. 3rd Edn., Springer Science, New York, USA., ISBN-13: 9781441911483, Pages: 615.
- [34] Palungkun R. 1999. Sukses Berkembangbiak Cacing Tanah (Lumbricusrubellus). Penerbit Swadaya. Jakarta.
- [35] Andries JL, Buysse FX, De Brabander DL and Cottyn BG. 1987. Isoacids in ruminant nutrition: Their role in ruminal and intermediary metabolism and possible influenced on performance. A Review. Anim. Feed Sci. Technol. 18: 169 180.
- [36] Russel JB, Connor JDO, Fox DG, Van Soest PJ and Sniffen CJ. 1992. A net carbohydrate and protein system for evaluating cattle diets: I. Ruminal fermentation. Journal Animal Science, 70:3551-3561.
- [37] Ginting SP. 2005. Synchronization of protein and energy degradation in the rumen to maximize microbial protein production. Wartazoa, 15(1): 1-10.
- [38] Atasoglu C, Guliye AY, and Wallace RJ. 2004. Use of stable isotopes to measure de novo synthesis and turnover of amino acid-C and -N in mixed microorganisms from the sheep rumen in vitro. J. Nutr. 91:235-261.
- [39] Jarmuji., Warly L, Zain M and Khasrad. 2021. Improving sakura block quality as feed supplement to optimize rumen fermentation products and nutrients digestibility in vitro. Advances in Animal and Veterinary Sciences. 9(10):1594-1601.
- [40] Zhang H, Chen Y, Xu XL and Yang YX. 2013. Effects of branched-chain amino acids on in vitro ruminal fermentation of wheat straw. Asian- Aust. J. Anim. Sci. 26(4):523-528.

[41] Sihombing G, Pratitis W and Dewangga GA. 2010. Effect of using earthworm meal (Lumbricus rubellus) on the digestibility of dry matter and organic matter of ration of local male rams. Caraka Tani., 25(1): 80-86. https://doi.org/10.20961/ carakatani.25i1.15746.